
SPH
Neighborhood Search

(and Time Step)

Matthias Teschner

Computer Science Department

University of Freiburg

University of Freiburg - Computer Science Department - Computer Graphics

Motivation

1.7 million fluid particles

341 million particle pairs are processed per simulation step

University of Freiburg - Computer Science Department - Computer Graphics

Motivation

12 million fluid particles, 5 million boundary particles

2.3 billion particle pairs are processed per simulation step

5.2 s for neighborhood search

University of Freiburg - Computer Science Department - Computer Graphics

neighborhood search in SPH

uniform grid

index sort

z-index sort

spatial hashing

compact hashing

results

Outline

University of Freiburg - Computer Science Department - Computer Graphics

foreach particle do
compute density

compute pressure

foreach particle do
compute forces

integrate

density and force computation
process all neighbors of a particle

SPH Simulation Step
Using a State Equation

University of Freiburg - Computer Science Department - Computer Graphics

efficient construction and processing of
dynamically changing neighbor sets is essential

neighbor search requires fast access
to the cell of a particle

to all adjacent cells of a particle's cell

temporal coherence should be employed

spatial locality should be preserved

hierarchical data structures are less efficient in this context
construction in O (n log n), access in O (log n)

uniform grid is generally preferred
construction in O (n), access in O (1)

Neighbor Search
Characteristics

University of Freiburg - Computer Science Department - Computer Graphics

basic grid

index sort

z-index sort

spatial hashing

compact hashing

Uniform Grid
Implementations

University of Freiburg - Computer Science Department - Computer Graphics

particle is stored in a cell with coordinates (k, l, m)

27 cells are queried in the neighborhood search
(k±1, l±1, m±1)

cell size equals the influence radius of a particle
larger cells increase the number of tested particles

smaller cells increase the number of tested cells

parallel construction suffers from race conditions
insertion of particles from different threads in the same cell

Basic Grid

University of Freiburg - Computer Science Department - Computer Graphics

cell index c = k + l · K + m · K · L is computed for a particle
K and L denote the number of cells in x and y direction

particles are sorted with respect to their cell index
radix sort, O(n)

each grid cell (k, l, m) stores a reference to the first
particle in the sorted list

Index Sort
Construction

uniform grid

sorted particles with
their cell indices

University of Freiburg - Computer Science Department - Computer Graphics

parallelizable

memory allocations are avoided

constant memory consumption

entire spatial grid has to be represented
to find neighboring cells

Index Sort
Construction

University of Freiburg - Computer Science Department - Computer Graphics

sorted particle array is queried (parallelizable)

particles in the same cell are queried

references to particles of adjacent cells are obtained from
the references stored in the uniform grid

improved cache-hit rate
particles in the same cell are close in memory

particles of neighboring cells are not necessarily close in memory

Index Sort
Query

University of Freiburg - Computer Science Department - Computer Graphics

particles are sorted with
respect to a z-curve index

improved cache-hit rate
particles in adjacent cells
are close in memory

efficient computation of
z-curve indices possible

Z-Index Sort

z-curve

University of Freiburg - Computer Science Department - Computer Graphics

particle attributes and z-curve indices
are processed separately

handles (particle identifier, z-curve index)
are sorted in each time step

reduces memory transfer

spatial locality is only marginally influenced
due to temporal coherence

attribute sets are sorted every 100th simulation step
restores spatial locality

Z-Index Sort
Sorting

University of Freiburg - Computer Science Department - Computer Graphics

instead of radix sort, insertion sort is employed
O (n) for almost sorted arrays

due to temporal coherence, only 2% of all particles
change their cell, i. e. z-curve index, in each time step

Z-Index Sort
Sorting

University of Freiburg - Computer Science Department - Computer Graphics

Z-Index Sort
Reordering

particles colored according
to their location in memory

spatial compactness is
enforced using a z-curve

University of Freiburg - Computer Science Department - Computer Graphics

hash function maps a grid cell to a hash cell
infinite domain is mapped to a finite list

in contrast to index sort, infinite domains can be handled

large hash tables reduce number of hash collisions
hash collisions occur, if different spatial cells are mapped
to the same hash cell

hash collisions slow down the query

reduced memory allocations
memory for a certain number of entries is allocated
for each hash cell

reduced cache-hit rate
hash table is sparsely filled

filled and empty cells are alternating

Spatial Hashing

University of Freiburg - Computer Science Department - Computer Graphics

hash cells store handles to a compact list of used cells
k entries are pre-allocated for each
element in the list of used cells

elements in the used-cell list are
generated if a particle is placed
in a new cell

elements are deleted,
if a cell gets empty

memory consumption is
reduced from O (m · k) to
O (m + n · k) with m » n

list of used cells is queried
in the neighbor search

Compact Hashing

University of Freiburg - Computer Science Department - Computer Graphics

not parallelizable
particles from different threads might be inserted in the same cell

larger hash table compared to spatial hashing to reduce
hash collisions

temporal coherence is employed
list of used cells is not rebuilt, but updated

set of particles with changed cell index is estimated
(about 2% of all particles)

particle is removed from the old cell and added to the new cell
(again not parallelizable)

Compact Hashing
Construction

University of Freiburg - Computer Science Department - Computer Graphics

processing of used cells
bad spatial locality

used cells close in memory are not close in space

hash-collision flag
if there is no hash collision in a cell, hash indices of adjacent cells
have to be computed only once for all particles in this cell

large hash table results in 2% cells with hash collisions

Compact Hashing
Query

University of Freiburg - Computer Science Department - Computer Graphics

particles are sorted with respect to a z-curve
every 100th step

after sorting, the list of used cells has to be rebuilt

as particles are serially inserted into the list of used cells,
the list is consistent with the z-curve

improved cache hit rate during the traversal of the list of used cells

Compact Hashing
Query

University of Freiburg - Computer Science Department - Computer Graphics

Compact Hashing
Reordering

University of Freiburg - Computer Science Department - Computer Graphics

Comparison

40 (64)32 (55)8 (9)compact hashing

128 (134)86 (90)42 (44)spatial hashing

43 (50)27 (30)16 (20)z-index sort

65 (68)29 (30)36 (38)index sort

64 (133)38 (106)26 (27)basic grid

totalqueryconstructionmethod

measurements in ms for 130K
particles on a 24-core computer
with 128 GB RAM

with reordering and
(without reordering)

University of Freiburg - Computer Science Department - Computer Graphics

Discussion

index sort
fast query as particles are processed in the order of cell indices

slow construction due to sorting

z-index sort
fast construction due to insertion sort of an almost sorted list

sorting with respect to the z-curve improves cache-hit rate

spatial hashing
slow query due to hash collisions and due to the traversal
of the sparsely filled hash table

compact hashing
fast construction due to temporal coherence

fast query due to the compact list of used cells
and due to the hash-collision flag

University of Freiburg - Computer Science Department - Computer Graphics

Parallel Scaling

University of Freiburg - Computer Science Department - Computer Graphics

Result

75k fluid particles

4 min computation time

University of Freiburg - Computer Science Department - Computer Graphics

Result

University of Freiburg - Computer Science Department - Computer Graphics

neighborhood search in SPH

uniform grid

index sort

z-index sort

spatial hashing

compact hashing

results

Summary

University of Freiburg - Computer Science Department - Computer Graphics

index sort
PURCELL T. J., DONNER C., CAMMARANO M., JENSEN H. W.,
HANRAHAN P.: Photon Mapping on Programmable Graphics
Hardware. ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, 2003.

spatial hashing
TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANETS D., GROSS M.: Optimized Spatial Hashing for
Collision Detection of Deformable Objects. Vision, Modeling,
Visualization 2003.

z-index sort, compact hashing
IHMSEN M., AKINCI N., BECKER M., TESCHNER M.:
A Parallel SPH Implementation on Multi-core CPUs.
Computer Graphics Forum, accepted.

References

SPH
Time Step

Matthias Teschner

Computer Science Department

University of Freiburg

University of Freiburg - Computer Science Department - Computer Graphics

pressure computation

boundary handling

adaptive time stepping

Outline

University of Freiburg - Computer Science Department - Computer Graphics

Predictor-corrector
(PCISPH)

[Solenthaler 2009]

iterative pressure
computation

large time step

Tait equation (WCSPH)
[Becker and Teschner 2007]

efficient to compute

small time step

computation time for the PCISPH scenario
is 20 times shorter than WCSPH

Pressure Computation

University of Freiburg - Computer Science Department - Computer Graphics

foreach particle do
compute density

compute pressure

foreach particle do
compute forces

integrate

neighbor sets are processed two times

SESPH

University of Freiburg - Computer Science Department - Computer Graphics

foreach particle do
compute forces
set pressure and pressure force to zero

while (max(ρerr) > η) or number of iterations < 3) do
foreach particle do

predict velocity and position
foreach particle do

update distances to neighbors
predict density variation
update pressure

foreach particle do
compute pressure force

foreach particle do
update position and velocity

neighbor sets are processed at least seven times

PCISPH

University of Freiburg - Computer Science Department - Computer Graphics

is a limiting factor for the time step
due to a potentially non-homogenous pressure distribution

Boundary Handling

color indicates pressure

[Becker et al., IEEE TVCG 2009] [Ihmsen et al., VRIPHYS 2010]

University of Freiburg - Computer Science Department - Computer Graphics

small time step is required only for short time periods

difficult to pre-estimate the time step

significant speed-up of the overall computation time
due to adaptive time-stepping

Adaptive Time Stepping

University of Freiburg - Computer Science Department - Computer Graphics

Adaptive Time Stepping

